Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !
Kai Arulkumaran
Manage episode 287496084 series 2536330
Kai Arulkumaran is a researcher at Araya in Tokyo.
Featured References
AlphaStar: An Evolutionary Computation Perspective
Kai Arulkumaran, Antoine Cully, Julian Togelius
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
Tianhong Dai, Kai Arulkumaran, Tamara Gerbert, Samyakh Tukra, Feryal Behbahani, Anil Anthony Bharath
Training Agents using Upside-Down Reinforcement Learning
Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, Jürgen Schmidhuber
Additional References
- Araya
- NNAISENSE
- Kai Arulkumaran on Google Scholar
- https://github.com/Kaixhin/rlenvs
- https://github.com/Kaixhin/Atari
- https://github.com/Kaixhin/Rainbow
- Tschiatschek, S., Arulkumaran, K., Stühmer, J. & Hofmann, K. (2018). Variational Inference for Data-Efficient Model Learning in POMDPs. arXiv:1805.09281.
- Arulkumaran, K., Dilokthanakul, N., Shanahan, M. & Bharath, A. A. (2016). Classifying Options for Deep Reinforcement Learning. International Joint Conference on Artificial Intelligence, Deep Reinforcement Learning Workshop.
- Garnelo, M., Arulkumaran, K. & Shanahan, M. (2016). Towards Deep Symbolic Reinforcement Learning. Annual Conference on Neural Information Processing Systems, Deep Reinforcement Learning Workshop.
- Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine.
- Agostinelli, A., Arulkumaran, K., Sarrico, M., Richemond, P. & Bharath, A. A. (2019). Memory-Efficient Episodic Control Reinforcement Learning with Dynamic Online k-means. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
- Sarrico, M., Arulkumaran, K., Agostinelli, A., Richemond, P. & Bharath, A. A. (2019). Sample-Efficient Reinforcement Learning with Maximum Entropy Mellowmax Episodic Control. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
61 tập
Manage episode 287496084 series 2536330
Kai Arulkumaran is a researcher at Araya in Tokyo.
Featured References
AlphaStar: An Evolutionary Computation Perspective
Kai Arulkumaran, Antoine Cully, Julian Togelius
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
Tianhong Dai, Kai Arulkumaran, Tamara Gerbert, Samyakh Tukra, Feryal Behbahani, Anil Anthony Bharath
Training Agents using Upside-Down Reinforcement Learning
Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, Jürgen Schmidhuber
Additional References
- Araya
- NNAISENSE
- Kai Arulkumaran on Google Scholar
- https://github.com/Kaixhin/rlenvs
- https://github.com/Kaixhin/Atari
- https://github.com/Kaixhin/Rainbow
- Tschiatschek, S., Arulkumaran, K., Stühmer, J. & Hofmann, K. (2018). Variational Inference for Data-Efficient Model Learning in POMDPs. arXiv:1805.09281.
- Arulkumaran, K., Dilokthanakul, N., Shanahan, M. & Bharath, A. A. (2016). Classifying Options for Deep Reinforcement Learning. International Joint Conference on Artificial Intelligence, Deep Reinforcement Learning Workshop.
- Garnelo, M., Arulkumaran, K. & Shanahan, M. (2016). Towards Deep Symbolic Reinforcement Learning. Annual Conference on Neural Information Processing Systems, Deep Reinforcement Learning Workshop.
- Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine.
- Agostinelli, A., Arulkumaran, K., Sarrico, M., Richemond, P. & Bharath, A. A. (2019). Memory-Efficient Episodic Control Reinforcement Learning with Dynamic Online k-means. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
- Sarrico, M., Arulkumaran, K., Agostinelli, A., Richemond, P. & Bharath, A. A. (2019). Sample-Efficient Reinforcement Learning with Maximum Entropy Mellowmax Episodic Control. Annual Conference on Neural Information Processing Systems, Workshop on Biological and Artificial Reinforcement Learning.
61 tập
Tất cả các tập
×Chào mừng bạn đến với Player FM!
Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.