Nội dung được cung cấp bởi Robin Ranjit Singh Chauhan. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Robin Ranjit Singh Chauhan hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !
Nan Jiang
MP3•Trang chủ episode
Manage episode 266378971 series 2536330
Nội dung được cung cấp bởi Robin Ranjit Singh Chauhan. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Robin Ranjit Singh Chauhan hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Nan Jiang is an Assistant Professor of Computer Science at University of Illinois. He was a Postdoc Microsoft Research, and did his PhD at University of Michigan under Professor Satinder Singh.
Featured References
- Reinforcement Learning: Theory and Algorithms
Alekh Agarwal Nan Jiang Sham M. Kakade - Model-based RL in Contextual Decision Processes: PAC bounds and Exponential Improvements over Model-free Approaches
Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford - Information-Theoretic Considerations in Batch Reinforcement Learning
Jinglin Chen, Nan Jiang
Additional References
- Towards a Unified Theory of State Abstraction for MDPs, Lihong Li, Thomas J. Walsh, Michael L. Littman
- Doubly Robust Off-policy Value Evaluation for Reinforcement Learning, Nan Jiang, Lihong Li
- Minimax Confidence Interval for Off-Policy Evaluation and Policy Optimization, Nan Jiang, Jiawei Huang
- Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning, Cameron Voloshin, Hoang M. Le, Nan Jiang, Yisong Yue
Errata
- [Robin] I misspoke when I said in domain randomization we want the agent to "ignore" domain parameters. What I should have said is, we want the agent to perform well within some range of domain parameters, it should be robust with respect to domain parameters.
61 tập
MP3•Trang chủ episode
Manage episode 266378971 series 2536330
Nội dung được cung cấp bởi Robin Ranjit Singh Chauhan. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Robin Ranjit Singh Chauhan hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Nan Jiang is an Assistant Professor of Computer Science at University of Illinois. He was a Postdoc Microsoft Research, and did his PhD at University of Michigan under Professor Satinder Singh.
Featured References
- Reinforcement Learning: Theory and Algorithms
Alekh Agarwal Nan Jiang Sham M. Kakade - Model-based RL in Contextual Decision Processes: PAC bounds and Exponential Improvements over Model-free Approaches
Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford - Information-Theoretic Considerations in Batch Reinforcement Learning
Jinglin Chen, Nan Jiang
Additional References
- Towards a Unified Theory of State Abstraction for MDPs, Lihong Li, Thomas J. Walsh, Michael L. Littman
- Doubly Robust Off-policy Value Evaluation for Reinforcement Learning, Nan Jiang, Lihong Li
- Minimax Confidence Interval for Off-Policy Evaluation and Policy Optimization, Nan Jiang, Jiawei Huang
- Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning, Cameron Voloshin, Hoang M. Le, Nan Jiang, Yisong Yue
Errata
- [Robin] I misspoke when I said in domain randomization we want the agent to "ignore" domain parameters. What I should have said is, we want the agent to perform well within some range of domain parameters, it should be robust with respect to domain parameters.
61 tập
Tất cả các tập
×Chào mừng bạn đến với Player FM!
Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.