Artwork

Nội dung được cung cấp bởi Ashish Sinha. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Ashish Sinha hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Engineering Jobs in the Age of AI: What You MUST Know #AISnakeOil

38:24
 
Chia sẻ
 

Manage episode 456515813 series 3237949
Nội dung được cung cấp bởi Ashish Sinha. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Ashish Sinha hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

In this conversation, Ashish Sinha interviews Arvind Narayanan, professor of computer science at Princeton University and co-author of the book AI Snake Oil (https://amzn.to/402Ayiw), discussing the impact of AI on various sectors, the differences between generative and predictive AI, the challenges of AI agents, and the future of AI technology. We explore the importance of human-AI collaboration, the role of reasoning in AI, and the need for better evaluation criteria to build trust in AI systems. Narayanan emphasizes the necessity for technical breadth over mastery in the evolving job market and shares practical applications of AI in education and research. Unique Quotes from the Conversation On Predicting Creative Success "The success of cultural products relies on chance elements that cannot be predicted in advance." This highlights the inherent unpredictability of creative ventures, whether driven by AI or humans. -- On Generative AI in Programming "It’s not that AI writes better code, but it takes so much of the drudgery and boring parts out of it." A reminder that AI is a tool to enhance, not replace, human creativity in programming. -- On Predictive AI’s Ethical Concerns "These tools are only slightly better than random at making really consequential decisions about people." A critique of the overreliance on AI in life-altering decisions like hiring or criminal justice. -- On the Capability-Reliability Gap "The capability-reliability gap means these systems are not reliable right now." An acknowledgment of AI’s limitations, emphasizing the need for better testing and accountability. -- On Preparing for the Future of Work "Technical mastery is less valuable than having technical skills combined with a breadth of skills." Advice for future professionals to combine technical expertise with adaptability and interdisciplinary thinking. -- Takeaways

  • The unpredictability of success in creative products is a key theme.
  • Generative AI is widely recognized, but predictive AI poses ethical challenges.
  • AI agents must be more than just wrappers around models.
  • Benchmarking AI in complex environments is a significant challenge.
  • The capability reliability gap highlights the unreliability of current AI systems.
  • Human-AI collaboration is crucial for effective AI deployment.
  • Inference scaling is a promising area for improving AI performance.
  • Trust in AI is at risk due to rapid deployment without proper evaluation.
  • Future engineers should focus on technical breadth and adaptability.

  continue reading

126 tập

Artwork
iconChia sẻ
 
Manage episode 456515813 series 3237949
Nội dung được cung cấp bởi Ashish Sinha. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Ashish Sinha hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

In this conversation, Ashish Sinha interviews Arvind Narayanan, professor of computer science at Princeton University and co-author of the book AI Snake Oil (https://amzn.to/402Ayiw), discussing the impact of AI on various sectors, the differences between generative and predictive AI, the challenges of AI agents, and the future of AI technology. We explore the importance of human-AI collaboration, the role of reasoning in AI, and the need for better evaluation criteria to build trust in AI systems. Narayanan emphasizes the necessity for technical breadth over mastery in the evolving job market and shares practical applications of AI in education and research. Unique Quotes from the Conversation On Predicting Creative Success "The success of cultural products relies on chance elements that cannot be predicted in advance." This highlights the inherent unpredictability of creative ventures, whether driven by AI or humans. -- On Generative AI in Programming "It’s not that AI writes better code, but it takes so much of the drudgery and boring parts out of it." A reminder that AI is a tool to enhance, not replace, human creativity in programming. -- On Predictive AI’s Ethical Concerns "These tools are only slightly better than random at making really consequential decisions about people." A critique of the overreliance on AI in life-altering decisions like hiring or criminal justice. -- On the Capability-Reliability Gap "The capability-reliability gap means these systems are not reliable right now." An acknowledgment of AI’s limitations, emphasizing the need for better testing and accountability. -- On Preparing for the Future of Work "Technical mastery is less valuable than having technical skills combined with a breadth of skills." Advice for future professionals to combine technical expertise with adaptability and interdisciplinary thinking. -- Takeaways

  • The unpredictability of success in creative products is a key theme.
  • Generative AI is widely recognized, but predictive AI poses ethical challenges.
  • AI agents must be more than just wrappers around models.
  • Benchmarking AI in complex environments is a significant challenge.
  • The capability reliability gap highlights the unreliability of current AI systems.
  • Human-AI collaboration is crucial for effective AI deployment.
  • Inference scaling is a promising area for improving AI performance.
  • Trust in AI is at risk due to rapid deployment without proper evaluation.
  • Future engineers should focus on technical breadth and adaptability.

  continue reading

126 tập

すべてのエピソード

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh