Artwork

Nội dung được cung cấp bởi Daniel Filan. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Daniel Filan hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

33 - RLHF Problems with Scott Emmons

1:41:24
 
Chia sẻ
 

Manage episode 423107256 series 2844728
Nội dung được cung cấp bởi Daniel Filan. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Daniel Filan hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Reinforcement Learning from Human Feedback, or RLHF, is one of the main ways that makers of large language models make them 'aligned'. But people have long noted that there are difficulties with this approach when the models are smarter than the humans providing feedback. In this episode, I talk with Scott Emmons about his work categorizing the problems that can show up in this setting.

Patreon: patreon.com/axrpodcast

Ko-fi: ko-fi.com/axrpodcast

The transcript: https://axrp.net/episode/2024/06/12/episode-33-rlhf-problems-scott-emmons.html

Topics we discuss, and timestamps:

0:00:33 - Deceptive inflation

0:17:56 - Overjustification

0:32:48 - Bounded human rationality

0:50:46 - Avoiding these problems

1:14:13 - Dimensional analysis

1:23:32 - RLHF problems, in theory and practice

1:31:29 - Scott's research program

1:39:42 - Following Scott's research

Scott's website: https://www.scottemmons.com

Scott's X/twitter account: https://x.com/emmons_scott

When Your AIs Deceive You: Challenges With Partial Observability of Human Evaluators in Reward Learning: https://arxiv.org/abs/2402.17747

Other works we discuss:

AI Deception: A Survey of Examples, Risks, and Potential Solutions: https://arxiv.org/abs/2308.14752

Uncertain decisions facilitate better preference learning: https://arxiv.org/abs/2106.10394

Invariance in Policy Optimisation and Partial Identifiability in Reward Learning: https://arxiv.org/abs/2203.07475

The Humble Gaussian Distribution (aka principal component analysis and dimensional analysis): http://www.inference.org.uk/mackay/humble.pdf

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!: https://arxiv.org/abs/2310.03693

Episode art by Hamish Doodles: hamishdoodles.com

  continue reading

42 tập

Artwork
iconChia sẻ
 
Manage episode 423107256 series 2844728
Nội dung được cung cấp bởi Daniel Filan. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Daniel Filan hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Reinforcement Learning from Human Feedback, or RLHF, is one of the main ways that makers of large language models make them 'aligned'. But people have long noted that there are difficulties with this approach when the models are smarter than the humans providing feedback. In this episode, I talk with Scott Emmons about his work categorizing the problems that can show up in this setting.

Patreon: patreon.com/axrpodcast

Ko-fi: ko-fi.com/axrpodcast

The transcript: https://axrp.net/episode/2024/06/12/episode-33-rlhf-problems-scott-emmons.html

Topics we discuss, and timestamps:

0:00:33 - Deceptive inflation

0:17:56 - Overjustification

0:32:48 - Bounded human rationality

0:50:46 - Avoiding these problems

1:14:13 - Dimensional analysis

1:23:32 - RLHF problems, in theory and practice

1:31:29 - Scott's research program

1:39:42 - Following Scott's research

Scott's website: https://www.scottemmons.com

Scott's X/twitter account: https://x.com/emmons_scott

When Your AIs Deceive You: Challenges With Partial Observability of Human Evaluators in Reward Learning: https://arxiv.org/abs/2402.17747

Other works we discuss:

AI Deception: A Survey of Examples, Risks, and Potential Solutions: https://arxiv.org/abs/2308.14752

Uncertain decisions facilitate better preference learning: https://arxiv.org/abs/2106.10394

Invariance in Policy Optimisation and Partial Identifiability in Reward Learning: https://arxiv.org/abs/2203.07475

The Humble Gaussian Distribution (aka principal component analysis and dimensional analysis): http://www.inference.org.uk/mackay/humble.pdf

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!: https://arxiv.org/abs/2310.03693

Episode art by Hamish Doodles: hamishdoodles.com

  continue reading

42 tập

כל הפרקים

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh