Artwork

Nội dung được cung cấp bởi Carnegie Mellon University. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Carnegie Mellon University hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Enron, Wikipedia and the Deal with Biased Low-Friction Data

29:17
 
Chia sẻ
 

Manage episode 280193765 series 2789552
Nội dung được cung cấp bởi Carnegie Mellon University. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Carnegie Mellon University hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

The Enron emails helped give us spam filters, and many natural language processing and fact-checking algorithms rely on data from Wikipedia. While these data resources are plentiful and easily accessible, they are also highly biased. This week, we speak to guests Amanda Levendowski and Katie Willingham about how low-friction data sources contribute to algorithmic bias and the role of copyright law in accessing less troublesome sources of knowledge and data.

  continue reading

41 tập

Artwork
iconChia sẻ
 
Manage episode 280193765 series 2789552
Nội dung được cung cấp bởi Carnegie Mellon University. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Carnegie Mellon University hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

The Enron emails helped give us spam filters, and many natural language processing and fact-checking algorithms rely on data from Wikipedia. While these data resources are plentiful and easily accessible, they are also highly biased. This week, we speak to guests Amanda Levendowski and Katie Willingham about how low-friction data sources contribute to algorithmic bias and the role of copyright law in accessing less troublesome sources of knowledge and data.

  continue reading

41 tập

Tous les épisodes

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh