Artwork

Nội dung được cung cấp bởi Oxford University. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Oxford University hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Joining Bayesian submodels with Markov melding

55:11
 
Chia sẻ
 

Manage episode 337518681 series 3382492
Nội dung được cung cấp bởi Oxford University. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Oxford University hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
This seminar explains and illustrates the approach of Markov melding for joint analysis. Integrating multiple sources of data into a joint analysis provides more precise estimates and reduces the risk of biases introduced by using only partial data. However, it can be difficult to conduct a joint analysis in practice. Instead each data source is typically modelled separately, but this results in uncertainty not being fully propagated. We propose to address this problem using a simple, general method, which requires only small changes to existing models and software. We first form a joint Bayesian model based upon the original submodels using a generic approach we call "Markov melding". We show that this model can be fitted in submodel-specific stages, rather than as a single, monolithic model. We also show the concept can be extended to "chains of submodels", in which submodels relate to neighbouring submodels via common quantities. The relationship to the "cut distribution" will also be discussed. We illustrate the approach using examples from an A/H1N1 influenza severity evidence synthesis; integrated population models in ecology; and modelling uncertain-time-to-event data in hospital intensive care units.
  continue reading

35 tập

Artwork
iconChia sẻ
 
Manage episode 337518681 series 3382492
Nội dung được cung cấp bởi Oxford University. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Oxford University hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
This seminar explains and illustrates the approach of Markov melding for joint analysis. Integrating multiple sources of data into a joint analysis provides more precise estimates and reduces the risk of biases introduced by using only partial data. However, it can be difficult to conduct a joint analysis in practice. Instead each data source is typically modelled separately, but this results in uncertainty not being fully propagated. We propose to address this problem using a simple, general method, which requires only small changes to existing models and software. We first form a joint Bayesian model based upon the original submodels using a generic approach we call "Markov melding". We show that this model can be fitted in submodel-specific stages, rather than as a single, monolithic model. We also show the concept can be extended to "chains of submodels", in which submodels relate to neighbouring submodels via common quantities. The relationship to the "cut distribution" will also be discussed. We illustrate the approach using examples from an A/H1N1 influenza severity evidence synthesis; integrated population models in ecology; and modelling uncertain-time-to-event data in hospital intensive care units.
  continue reading

35 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe