Artwork

Nội dung được cung cấp bởi Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

#149 Recommender Systems: Funktionsweise und Forschungstrends mit Eva Zangerle

1:11:03
 
Chia sẻ
 

Manage episode 449748914 series 3432292
Nội dung được cung cấp bởi Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Recommender Systems: Was steckt hinter modernen Empfehlungsalgorithmen?

Moderne Empfehlungsalgorithmen begegnen uns im Alltag überall: Die nächste Serie bei Netflix, die “für dich zusammengestellte Playlist” bei Spotify oder “Kunden, die diesen Artikel gekauft haben, kauften auch” bei Amazon. In Zeiten von AI könnten wir meinen, dass dies alles schwarze Magie ist. Doch i.d.R. folgen die Empfehlungen gewissen Logiken. All das ganze wird im Research Bereich “Recommender Systems” genannt.

Dies ist auch das Thema dieser Episode. Prof. Dr. Eva Zangerle, eine Expertin im Bereich Recommender System erklärt uns, was Recommender Systems eigentlich sind, welche Grundlegenden Ansätze für Empfehlungsalgorithmen existieren, wie viele Daten benötigt werden um sinnvolle Ergebnisse zu erzielen, was das Cold-Start Problem ist, wie Forscher evaluieren können, ob es gute oder schlechte Empfehlungen sind, was die Begriffe Recall und Precision eigentlich bedeuten, ob Empfehlungsalgorithmen auch einen gewissen Bias entwickeln können sowie welche Trends auf dem Forschungsgebiet zur Zeit aktuell sind.

Unsere aktuellen Werbepartner findest du auf https://engineeringkiosk.dev/partners

Das schnelle Feedback zur Episode:

👍 (top) 👎 (geht so)

Feedback

Gerne behandeln wir auch euer Audio Feedback in einer der nächsten Episoden, einfach die Audiodatei per Email an stehtisch@engineeringkiosk.dev.

Links

Sprungmarken

(00:00:00) Recommender Systems mit Eva Zangerle

(00:06:07) RecSys - Die ACM Recommender Systems Conference

(00:06:31) Info/Werbung

(00:07:31) RecSys - Die ACM Recommender Systems Conference

(00:17:58) User Profile und Kontexte in Recommender Systems

(00:25:38) Wie baut man ein Recommender Systems auf?

(00:36:02) Das Cold-Start Problem, balancierte Algorithmen und das Habsburger-Problem

(00:42:37) Evaluierung von Recommender Systems: Precision und Recall

(00:51:55) AI und LLMs als Empfehlungs-Assistent

(00:55:51) Spezielle Datenbank-Systeme, Sequential Recommendation und Audio Recommendations

(01:01:22) Key Trends in der Recommender Systems und Information Retrieval Szene

(01:09:09) Empfehlung für den Einstieg in Recommender Systems

Hosts

Feedback

  continue reading

180 tập

Artwork
iconChia sẻ
 
Manage episode 449748914 series 3432292
Nội dung được cung cấp bởi Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Recommender Systems: Was steckt hinter modernen Empfehlungsalgorithmen?

Moderne Empfehlungsalgorithmen begegnen uns im Alltag überall: Die nächste Serie bei Netflix, die “für dich zusammengestellte Playlist” bei Spotify oder “Kunden, die diesen Artikel gekauft haben, kauften auch” bei Amazon. In Zeiten von AI könnten wir meinen, dass dies alles schwarze Magie ist. Doch i.d.R. folgen die Empfehlungen gewissen Logiken. All das ganze wird im Research Bereich “Recommender Systems” genannt.

Dies ist auch das Thema dieser Episode. Prof. Dr. Eva Zangerle, eine Expertin im Bereich Recommender System erklärt uns, was Recommender Systems eigentlich sind, welche Grundlegenden Ansätze für Empfehlungsalgorithmen existieren, wie viele Daten benötigt werden um sinnvolle Ergebnisse zu erzielen, was das Cold-Start Problem ist, wie Forscher evaluieren können, ob es gute oder schlechte Empfehlungen sind, was die Begriffe Recall und Precision eigentlich bedeuten, ob Empfehlungsalgorithmen auch einen gewissen Bias entwickeln können sowie welche Trends auf dem Forschungsgebiet zur Zeit aktuell sind.

Unsere aktuellen Werbepartner findest du auf https://engineeringkiosk.dev/partners

Das schnelle Feedback zur Episode:

👍 (top) 👎 (geht so)

Feedback

Gerne behandeln wir auch euer Audio Feedback in einer der nächsten Episoden, einfach die Audiodatei per Email an stehtisch@engineeringkiosk.dev.

Links

Sprungmarken

(00:00:00) Recommender Systems mit Eva Zangerle

(00:06:07) RecSys - Die ACM Recommender Systems Conference

(00:06:31) Info/Werbung

(00:07:31) RecSys - Die ACM Recommender Systems Conference

(00:17:58) User Profile und Kontexte in Recommender Systems

(00:25:38) Wie baut man ein Recommender Systems auf?

(00:36:02) Das Cold-Start Problem, balancierte Algorithmen und das Habsburger-Problem

(00:42:37) Evaluierung von Recommender Systems: Precision und Recall

(00:51:55) AI und LLMs als Empfehlungs-Assistent

(00:55:51) Spezielle Datenbank-Systeme, Sequential Recommendation und Audio Recommendations

(01:01:22) Key Trends in der Recommender Systems und Information Retrieval Szene

(01:09:09) Empfehlung für den Einstieg in Recommender Systems

Hosts

Feedback

  continue reading

180 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe