Artwork

Nội dung được cung cấp bởi Brian T. O’Neill from Designing for Analytics. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Brian T. O’Neill from Designing for Analytics hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge

45:25
 
Chia sẻ
 

Manage episode 469746355 series 2527129
Nội dung được cung cấp bởi Brian T. O’Neill from Designing for Analytics. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Brian T. O’Neill from Designing for Analytics hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Are you prepared for the hidden UX taxes that AI and LLM features might be imposing on your B2B customers—without your knowledge? Are you certain that your AI product or features are truly delivering value, or are there unseen taxes that are working against your users and your product / business? In this episode, I’m delving into some of UX challenges that I think need to be addressed when implementing LLM and AI features into B2B products.

While AI seems to offer the change for significantly enhanced productivity, it also introduces a new layer of complexity for UX design. This complexity is not limited to the challenges of designing in a probabilistic medium (i.e. ML/AI), but also in being able to define what “quality” means. When the product team does not have a shared understanding of what a measurably better UX outcome means, improved sales and user adoption are less likely to follow.

I’ll also discuss aspects of designing for AI that may be invisible on the surface. How might AI-powered products change the work of B2B users? What are some of the traps I see some startup clients and founders I advise in MIT’s Sandbox venture fund fall into?

If you’re a product leader in B2B / enterprise software and want to make sure your AI capabilities don’t end up creating more damage than value for users, this episode will help!

Highlights/ Skip to

  •   Improving your AI model accuracy improves outputs—but customers only care about outcomes (4:02)
  • AI-driven productivity gains also put the customer’s “next problem” into their face sooner. Are you addressing the most urgent problem they now have—or used to have? (7:35)
  • Products that win will combine AI with tastefully designed deterministic-software—because doing everything for everyone well is impossible and most models alone aren’t products (12:55)
  • Just because your AI app or LLM feature can do ”X” doesn't mean people will want it or change their behavior (16:26)
  • AI Agents sound great—but there is a human UX too, and it must enable trust and intervention at the right times (22:14)
  • Not overheard from customers: “I would buy this/use this if it had AI” (26:52)
  • Adaptive UIs sound like they’ll solve everything—but to reduce friction, they need to adapt to the person, not just the format of model outputs (30:20)
  • Introducing AI introduces more states and scenarios that your product may need to support that may not be obvious right away (37:56)

Quotes from Today’s Episode

  • Product leaders have to decide how much effort and resources you should put into model improvements versus improving a user’s experience. Obviously, model quality is important in certain contexts and regulated industries, but when GenAI errors and confabulations are lower risk to the user (i.e. they create minor friction or inconveniences), the broader user experience that you facilitate might be what is actually determining the true value of your AI features or product. Model accuracy alone is not going to necessarily lead to happier users or increased adoption. ML models can be quantifiably tested for accuracy with structured tests, but because they’re easier to test for quality vs. something like UX doesn’t mean users value these improvements more. The product will stand a better chance of creating business value when it is clearly demonstrating it is improving your users’ lives. (5:25)
  • When designing AI agents, there is still a human UX - a beneficiary - in the loop. They have an experience, whether you designed it with intention or not. How much transparency needs to be given to users when an agent does work for them? Should users be able to intervene when the AI is doing this type of work?  Handling errors is something we do in all software, but what about retraining and learning so that the future user experiences is better? Is the system learning anything while it’s going through this—and can I tell if it’s learning what I want/need it to learn? What about humans in the loop who might interact with or be affected by the work the agent is doing even if they aren’t the agent’s owner or “user”? Who’s outcomes matter here? At what cost? (22:51)
  • Customers primarily care about things like raising or changing their status, making more money, making their job easier, saving time, etc. In fact,I believe a product marketed with GenAI may eventually signal a negative / burden on customers thanks to the inflated and unmet expectations around AI that is poorly implemented in the product UX. Don’t think it’s going to be bought just because it using AI in a novel way. Customers aren’t sitting around wishing for “disruption” from your product; quite the opposite. AI or not, you need to make the customer the hero. Your AI will shine when it delivers an outsized UX outcome for your users (27:49)
  • What kind of UX are you delivering right out of the box when a customer tries out your AI product or feature? Did you design it for tire kicking, playing around, and user stress testing? Or just an idealistic happy path? GenAI features inside b2b products should surface capabilities and constraints particularly around where users can create value for themselves quickly. Natural hints and well-designed prompt nudges in LLMs for example are important to users and to your product team: because you’re setting a more realistic expectation of what’s possible with customers and helping them get to an outcome sooner. You’re also teaching them how to use your solution to get the most value—without asking them to go read a manual. (38:21)
  continue reading

113 tập

Artwork
iconChia sẻ
 
Manage episode 469746355 series 2527129
Nội dung được cung cấp bởi Brian T. O’Neill from Designing for Analytics. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Brian T. O’Neill from Designing for Analytics hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Are you prepared for the hidden UX taxes that AI and LLM features might be imposing on your B2B customers—without your knowledge? Are you certain that your AI product or features are truly delivering value, or are there unseen taxes that are working against your users and your product / business? In this episode, I’m delving into some of UX challenges that I think need to be addressed when implementing LLM and AI features into B2B products.

While AI seems to offer the change for significantly enhanced productivity, it also introduces a new layer of complexity for UX design. This complexity is not limited to the challenges of designing in a probabilistic medium (i.e. ML/AI), but also in being able to define what “quality” means. When the product team does not have a shared understanding of what a measurably better UX outcome means, improved sales and user adoption are less likely to follow.

I’ll also discuss aspects of designing for AI that may be invisible on the surface. How might AI-powered products change the work of B2B users? What are some of the traps I see some startup clients and founders I advise in MIT’s Sandbox venture fund fall into?

If you’re a product leader in B2B / enterprise software and want to make sure your AI capabilities don’t end up creating more damage than value for users, this episode will help!

Highlights/ Skip to

  •   Improving your AI model accuracy improves outputs—but customers only care about outcomes (4:02)
  • AI-driven productivity gains also put the customer’s “next problem” into their face sooner. Are you addressing the most urgent problem they now have—or used to have? (7:35)
  • Products that win will combine AI with tastefully designed deterministic-software—because doing everything for everyone well is impossible and most models alone aren’t products (12:55)
  • Just because your AI app or LLM feature can do ”X” doesn't mean people will want it or change their behavior (16:26)
  • AI Agents sound great—but there is a human UX too, and it must enable trust and intervention at the right times (22:14)
  • Not overheard from customers: “I would buy this/use this if it had AI” (26:52)
  • Adaptive UIs sound like they’ll solve everything—but to reduce friction, they need to adapt to the person, not just the format of model outputs (30:20)
  • Introducing AI introduces more states and scenarios that your product may need to support that may not be obvious right away (37:56)

Quotes from Today’s Episode

  • Product leaders have to decide how much effort and resources you should put into model improvements versus improving a user’s experience. Obviously, model quality is important in certain contexts and regulated industries, but when GenAI errors and confabulations are lower risk to the user (i.e. they create minor friction or inconveniences), the broader user experience that you facilitate might be what is actually determining the true value of your AI features or product. Model accuracy alone is not going to necessarily lead to happier users or increased adoption. ML models can be quantifiably tested for accuracy with structured tests, but because they’re easier to test for quality vs. something like UX doesn’t mean users value these improvements more. The product will stand a better chance of creating business value when it is clearly demonstrating it is improving your users’ lives. (5:25)
  • When designing AI agents, there is still a human UX - a beneficiary - in the loop. They have an experience, whether you designed it with intention or not. How much transparency needs to be given to users when an agent does work for them? Should users be able to intervene when the AI is doing this type of work?  Handling errors is something we do in all software, but what about retraining and learning so that the future user experiences is better? Is the system learning anything while it’s going through this—and can I tell if it’s learning what I want/need it to learn? What about humans in the loop who might interact with or be affected by the work the agent is doing even if they aren’t the agent’s owner or “user”? Who’s outcomes matter here? At what cost? (22:51)
  • Customers primarily care about things like raising or changing their status, making more money, making their job easier, saving time, etc. In fact,I believe a product marketed with GenAI may eventually signal a negative / burden on customers thanks to the inflated and unmet expectations around AI that is poorly implemented in the product UX. Don’t think it’s going to be bought just because it using AI in a novel way. Customers aren’t sitting around wishing for “disruption” from your product; quite the opposite. AI or not, you need to make the customer the hero. Your AI will shine when it delivers an outsized UX outcome for your users (27:49)
  • What kind of UX are you delivering right out of the box when a customer tries out your AI product or feature? Did you design it for tire kicking, playing around, and user stress testing? Or just an idealistic happy path? GenAI features inside b2b products should surface capabilities and constraints particularly around where users can create value for themselves quickly. Natural hints and well-designed prompt nudges in LLMs for example are important to users and to your product team: because you’re setting a more realistic expectation of what’s possible with customers and helping them get to an outcome sooner. You’re also teaching them how to use your solution to get the most value—without asking them to go read a manual. (38:21)
  continue reading

113 tập

All episodes

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe