Artwork

Nội dung được cung cấp bởi Nicolay Gerold. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Nicolay Gerold hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

#37 Brandon Smith on Chunking for RAG: Stop Breaking Your Documents Into Meaningless Pieces | Search

49:13
 
Chia sẻ
 

Manage episode 459078711 series 3585930
Nội dung được cung cấp bởi Nicolay Gerold. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Nicolay Gerold hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Today we are back continuing our series on search. We are talking to Brandon Smith, about his work for Chroma. He led one of the largest studies in the field on different chunking techniques. So today we will look at how we can unfuck our RAG systems from badly chosen chunking hyperparameters.

The biggest lie in RAG is that semantic search is simple. The reality is that it's easy to build, it's easy to get up and running, but it's really hard to get right. And if you don't have a good setup, it's near impossible to debug. One of the reasons it's really hard is actually chunking. And there are a lot of things you can get wrong.

And even OpenAI boggled it a little bit, in my opinion, using an 800 token length for the chunks. And this might work for legal, where you have a lot of boilerplate that carries little semantic meaning, but often you have the opposite. You have very information dense content and imagine fitting an entire Wikipedia page into the size of a tweet There will be a lot of information that's actually lost and that's what happens with long chunks The next is overlap openai uses a foreign token overlap or used to And what this does is actually we try to bring the important context into the chunk, but in reality, we don't really know where the context is coming from.

It could be from a few pages prior, not just the 400 tokens before. It could also be from a definition that's not even in the document at all. There is a really interesting solution actually from Anthropic Contextual Retrieval, where you basically pre process all the chunks to see whether there is any missing information and you basically try to reintroduce it.

Brandon Smith:

Nicolay Gerold:

00:00 The Biggest Lie in RAG: Semantic Search Simplified 00:43 Challenges in Chunking and Overlap 01:38 Introducing Brandon Smith and His Research 02:05 The Motivation and Mechanics of Chunking 04:40 Issues with Current Chunking Methods 07:04 Optimizing Chunking Strategies 23:04 Introduction to Chunk Overlap 24:23 Exploring LLM-Based Chunking 24:56 Challenges with Initial Approaches 28:17 Alternative Chunking Methods 36:13 Language-Specific Considerations 38:41 Future Directions and Best Practices

  continue reading

51 tập

Artwork
iconChia sẻ
 
Manage episode 459078711 series 3585930
Nội dung được cung cấp bởi Nicolay Gerold. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Nicolay Gerold hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Today we are back continuing our series on search. We are talking to Brandon Smith, about his work for Chroma. He led one of the largest studies in the field on different chunking techniques. So today we will look at how we can unfuck our RAG systems from badly chosen chunking hyperparameters.

The biggest lie in RAG is that semantic search is simple. The reality is that it's easy to build, it's easy to get up and running, but it's really hard to get right. And if you don't have a good setup, it's near impossible to debug. One of the reasons it's really hard is actually chunking. And there are a lot of things you can get wrong.

And even OpenAI boggled it a little bit, in my opinion, using an 800 token length for the chunks. And this might work for legal, where you have a lot of boilerplate that carries little semantic meaning, but often you have the opposite. You have very information dense content and imagine fitting an entire Wikipedia page into the size of a tweet There will be a lot of information that's actually lost and that's what happens with long chunks The next is overlap openai uses a foreign token overlap or used to And what this does is actually we try to bring the important context into the chunk, but in reality, we don't really know where the context is coming from.

It could be from a few pages prior, not just the 400 tokens before. It could also be from a definition that's not even in the document at all. There is a really interesting solution actually from Anthropic Contextual Retrieval, where you basically pre process all the chunks to see whether there is any missing information and you basically try to reintroduce it.

Brandon Smith:

Nicolay Gerold:

00:00 The Biggest Lie in RAG: Semantic Search Simplified 00:43 Challenges in Chunking and Overlap 01:38 Introducing Brandon Smith and His Research 02:05 The Motivation and Mechanics of Chunking 04:40 Issues with Current Chunking Methods 07:04 Optimizing Chunking Strategies 23:04 Introduction to Chunk Overlap 24:23 Exploring LLM-Based Chunking 24:56 Challenges with Initial Approaches 28:17 Alternative Chunking Methods 36:13 Language-Specific Considerations 38:41 Future Directions and Best Practices

  continue reading

51 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe