Artwork

Nội dung được cung cấp bởi Ludwig-Maximilians-Universität München and MCMP Team. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Ludwig-Maximilians-Universität München and MCMP Team hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Haecceities and Mathematical Structuralism

54:28
 
Chia sẻ
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117470 series 2929680
Nội dung được cung cấp bởi Ludwig-Maximilians-Universität München and MCMP Team. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Ludwig-Maximilians-Universität München and MCMP Team hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Christopher Menzel (Texas A&M University) gives a talk at the MCMP Colloquium (18 June, 2014) titled "Haecceities and Mathematical Structuralism". Abstract: It is well-known that some earlier versions of mathematical structuralism (notably from Resnik and Shapiro) appeared to be committed to a rather strong form of the Identity of Indiscernibles (II) that is falsified by the existence of structures like the complex field that admit of non-trivial automorphisms, or symmetries. In light of more recent work (notably, by MacBride, Ketland, Shapiro, Ladyman, and Leitgeb and Ladyman), it is widely accepted that the mathematical structuralist is not committed to II and that, in fact, the principle can be rejected outright on robustly structuralist grounds. I accept a qualified form of this view but I don't think the issue is as cut and dried as it might appear. In a 2007 Analysis article, José Bermúdez suggests that a strong version of II is still in play for the structuralist that can meet the challenge of non-trivial symmetries. The key to the proposal (as I will interpret it) lies in allowing identity properties, or haecceities, like being identical to c (for an arbitrary complex number c, say) to count as structural properties. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as properly structural and, in some circumstances, can serve as legitimate properties for discerning otherwise indiscernible “positions” in structures. Drawing on the model theoretic concept of an expansion, I base my argument on a notion of discernibility rooted intuitively in “underlying structure”. This notion turns out to be equivalent to a notion of discernibility identified in some previous studies but proves useful in focusing when haecceities can legitimately be invoked and why Bermúdez's proposed version of II falls short of a fully satisfactory structuralist principle.
  continue reading

22 tập

Artwork
iconChia sẻ
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117470 series 2929680
Nội dung được cung cấp bởi Ludwig-Maximilians-Universität München and MCMP Team. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Ludwig-Maximilians-Universität München and MCMP Team hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Christopher Menzel (Texas A&M University) gives a talk at the MCMP Colloquium (18 June, 2014) titled "Haecceities and Mathematical Structuralism". Abstract: It is well-known that some earlier versions of mathematical structuralism (notably from Resnik and Shapiro) appeared to be committed to a rather strong form of the Identity of Indiscernibles (II) that is falsified by the existence of structures like the complex field that admit of non-trivial automorphisms, or symmetries. In light of more recent work (notably, by MacBride, Ketland, Shapiro, Ladyman, and Leitgeb and Ladyman), it is widely accepted that the mathematical structuralist is not committed to II and that, in fact, the principle can be rejected outright on robustly structuralist grounds. I accept a qualified form of this view but I don't think the issue is as cut and dried as it might appear. In a 2007 Analysis article, José Bermúdez suggests that a strong version of II is still in play for the structuralist that can meet the challenge of non-trivial symmetries. The key to the proposal (as I will interpret it) lies in allowing identity properties, or haecceities, like being identical to c (for an arbitrary complex number c, say) to count as structural properties. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as properly structural and, in some circumstances, can serve as legitimate properties for discerning otherwise indiscernible “positions” in structures. Drawing on the model theoretic concept of an expansion, I base my argument on a notion of discernibility rooted intuitively in “underlying structure”. This notion turns out to be equivalent to a notion of discernibility identified in some previous studies but proves useful in focusing when haecceities can legitimately be invoked and why Bermúdez's proposed version of II falls short of a fully satisfactory structuralist principle.
  continue reading

22 tập

Alle Folgen

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh