Artwork

Nội dung được cung cấp bởi Zeta Alpha. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Zeta Alpha hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes

54:13
 
Chia sẻ
 

Manage episode 355037190 series 3446693
Nội dung được cung cấp bởi Zeta Alpha. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Zeta Alpha hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

We discuss the Information Retrieval publication "The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes" by Nils Reimers and Iryna Gurevych, which explores how Dense Passage Retrieval performance degrades as the index size varies and how it compares to traditional sparse or keyword-based methods.

Timestamps:

00:00 Co-host introduction

00:26 Paper introduction

02:18 Dense vs. Sparse retrieval

05:46 Theoretical analysis of false positives(1)

08:17 What is low vs. high dimensional representations

11:49 Theoretical analysis o false positives (2)

20:10 First results: growing the MS-Marco index

28:35 Adding random strings to the index

39:17 Discussion, takeaways

44:26 Will dense retrieval replace or coexist with sparse methods?

50:50 Sparse, Dense and Attentional Representations for Text Retrieval

Referenced work:

Sparse, Dense and Attentional Representations for Text Retrieval by Yi Luan et al. 2020.

  continue reading

21 tập

Artwork
iconChia sẻ
 
Manage episode 355037190 series 3446693
Nội dung được cung cấp bởi Zeta Alpha. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Zeta Alpha hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

We discuss the Information Retrieval publication "The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes" by Nils Reimers and Iryna Gurevych, which explores how Dense Passage Retrieval performance degrades as the index size varies and how it compares to traditional sparse or keyword-based methods.

Timestamps:

00:00 Co-host introduction

00:26 Paper introduction

02:18 Dense vs. Sparse retrieval

05:46 Theoretical analysis of false positives(1)

08:17 What is low vs. high dimensional representations

11:49 Theoretical analysis o false positives (2)

20:10 First results: growing the MS-Marco index

28:35 Adding random strings to the index

39:17 Discussion, takeaways

44:26 Will dense retrieval replace or coexist with sparse methods?

50:50 Sparse, Dense and Attentional Representations for Text Retrieval

Referenced work:

Sparse, Dense and Attentional Representations for Text Retrieval by Yi Luan et al. 2020.

  continue reading

21 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe