Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Nội dung được cung cấp bởi NLP Highlights and Allen Institute for Artificial Intelligence. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được NLP Highlights and Allen Institute for Artificial Intelligence hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !
97 - Automated Analysis Of Historical Printed Documents, With Taylor Berg-Kirkpatrick
MP3•Trang chủ episode
Manage episode 247106961 series 1452120
Nội dung được cung cấp bởi NLP Highlights and Allen Institute for Artificial Intelligence. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được NLP Highlights and Allen Institute for Artificial Intelligence hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
In this episode, we talk to Taylor Berg-Kirkpatrick about optical character recognition (OCR) on historical documents. Taylor starts off by describing some practical issues related to old scanning processes of documents that make performing OCR on them a difficult problem. Then he explains how one can build latent variable models for this data using unsupervised methods, the relative importance of various modeling choices, and summarizes how well the models do. We then take a higher level view of historical OCR as a Machine Learning problem, and discuss how it is different from other ML problems in terms of the tradeoff between learning from data and imposing constraints based on prior knowledge of the underlying process. Finally, Taylor talks about the applications of this research, and how these predictions can be of interest to historians studying the original texts.
…
continue reading
145 tập
MP3•Trang chủ episode
Manage episode 247106961 series 1452120
Nội dung được cung cấp bởi NLP Highlights and Allen Institute for Artificial Intelligence. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được NLP Highlights and Allen Institute for Artificial Intelligence hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
In this episode, we talk to Taylor Berg-Kirkpatrick about optical character recognition (OCR) on historical documents. Taylor starts off by describing some practical issues related to old scanning processes of documents that make performing OCR on them a difficult problem. Then he explains how one can build latent variable models for this data using unsupervised methods, the relative importance of various modeling choices, and summarizes how well the models do. We then take a higher level view of historical OCR as a Machine Learning problem, and discuss how it is different from other ML problems in terms of the tradeoff between learning from data and imposing constraints based on prior knowledge of the underlying process. Finally, Taylor talks about the applications of this research, and how these predictions can be of interest to historians studying the original texts.
…
continue reading
145 tập
Semua episode
×Chào mừng bạn đến với Player FM!
Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.