Artwork

Nội dung được cung cấp bởi Conviction. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Conviction hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

The evolution and promise of RAG architecture with Tengyu Ma from Voyage AI

36:20
 
Chia sẻ
 

Manage episode 422209686 series 3444082
Nội dung được cung cấp bởi Conviction. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Conviction hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

After Tengyu Ma spent years at Stanford researching AI optimization, embedding models, and transformers, he took a break from academia to start Voyage AI which allows enterprise customers to have the most accurate retrieval possible through the most useful foundational data. Tengyu joins Sarah on this week’s episode of No priors to discuss why RAG systems are winning as the dominant architecture in enterprise and the evolution of foundational data that has allowed RAG to flourish. And while fine-tuning is still in the conversation, Tengyu argues that RAG will continue to evolve as the cheapest, quickest, and most accurate system for data retrieval.

They also discuss methods for growing context windows and managing latency budgets, how Tengyu’s research has informed his work at Voyage, and the role academia should play as AI grows as an industry.

Show Links:

Sign up for new podcasts every week. Email feedback to show@no-priors.com

Follow us on Twitter: @NoPriorsPod | @Saranormous | @EladGil | @tengyuma

Show Notes:

(0:00) Introduction

(1:59) Key points of Tengyu’s research

(4:28) Academia compared to industry

(6:46) Voyage AI overview

(9:44) Enterprise RAG use cases

(15:23) LLM long-term memory and token limitations

(18:03) Agent chaining and data management

(22:01) Improving enterprise RAG

(25:44) Latency budgets

(27:48) Advice for building RAG systems

(31:06) Learnings as an AI founder

(32:55) The role of academia in AI

  continue reading

99 tập

Artwork
iconChia sẻ
 
Manage episode 422209686 series 3444082
Nội dung được cung cấp bởi Conviction. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Conviction hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

After Tengyu Ma spent years at Stanford researching AI optimization, embedding models, and transformers, he took a break from academia to start Voyage AI which allows enterprise customers to have the most accurate retrieval possible through the most useful foundational data. Tengyu joins Sarah on this week’s episode of No priors to discuss why RAG systems are winning as the dominant architecture in enterprise and the evolution of foundational data that has allowed RAG to flourish. And while fine-tuning is still in the conversation, Tengyu argues that RAG will continue to evolve as the cheapest, quickest, and most accurate system for data retrieval.

They also discuss methods for growing context windows and managing latency budgets, how Tengyu’s research has informed his work at Voyage, and the role academia should play as AI grows as an industry.

Show Links:

Sign up for new podcasts every week. Email feedback to show@no-priors.com

Follow us on Twitter: @NoPriorsPod | @Saranormous | @EladGil | @tengyuma

Show Notes:

(0:00) Introduction

(1:59) Key points of Tengyu’s research

(4:28) Academia compared to industry

(6:46) Voyage AI overview

(9:44) Enterprise RAG use cases

(15:23) LLM long-term memory and token limitations

(18:03) Agent chaining and data management

(22:01) Improving enterprise RAG

(25:44) Latency budgets

(27:48) Advice for building RAG systems

(31:06) Learnings as an AI founder

(32:55) The role of academia in AI

  continue reading

99 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe