Artwork

Nội dung được cung cấp bởi O'Reilly Radar. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được O'Reilly Radar hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

How to Train and Deploy Deep Learning at Scale

39:15
 
Chia sẻ
 

Manage episode 200799704 series 1427720
Nội dung được cung cấp bởi O'Reilly Radar. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được O'Reilly Radar hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
In this episode of the Data Show, I spoke with Ameet Talwalkar, assistant professor of machine learning at CMU and co-founder of Determined AI. He was an early and key contributor to Spark MLlib and a member of AMPLab. Most recently, he helped conceive and organize the first edition of SysML, a new academic conference at the intersection of systems and machine learning (ML). We discussed using and deploying deep learning at scale. This is an empirical era for machine learning, and, as I noted in an earlier article, as successful as deep learning has been, our level of understanding of why it works so well is still lacking. In practice, machine learning engineers need to explore and experiment using different architectures and hyperparameters before they settle on a model that works for their specific use case. Training a single model usually involves big (labeled) data and big models; as such, exploring the space of possible model architectures and parameters can take days, weeks, or even months. Talwalkar has spent the last few years grappling with this problem as an academic researcher and as an entrepreneur. In this episode, he describes some of his related work on hyperparameter tuning, systems, and more.
  continue reading

443 tập

Artwork
iconChia sẻ
 
Manage episode 200799704 series 1427720
Nội dung được cung cấp bởi O'Reilly Radar. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được O'Reilly Radar hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
In this episode of the Data Show, I spoke with Ameet Talwalkar, assistant professor of machine learning at CMU and co-founder of Determined AI. He was an early and key contributor to Spark MLlib and a member of AMPLab. Most recently, he helped conceive and organize the first edition of SysML, a new academic conference at the intersection of systems and machine learning (ML). We discussed using and deploying deep learning at scale. This is an empirical era for machine learning, and, as I noted in an earlier article, as successful as deep learning has been, our level of understanding of why it works so well is still lacking. In practice, machine learning engineers need to explore and experiment using different architectures and hyperparameters before they settle on a model that works for their specific use case. Training a single model usually involves big (labeled) data and big models; as such, exploring the space of possible model architectures and parameters can take days, weeks, or even months. Talwalkar has spent the last few years grappling with this problem as an academic researcher and as an entrepreneur. In this episode, he describes some of his related work on hyperparameter tuning, systems, and more.
  continue reading

443 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe