Artwork

Nội dung được cung cấp bởi multimidiavillage. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được multimidiavillage hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Células solares mais eficientes.

2:38
 
Chia sẻ
 

Manage episode 313125808 series 3259842
Nội dung được cung cấp bởi multimidiavillage. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được multimidiavillage hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Em apenas dez anos de pesquisa, as células solares de perovskitas tornaram-se competitivas em termos de eficiência. Atualmente, sabe-se que a sua capacidade de converter luz em eletricidade é maior ainda quando elas são empilhadas em cima de células solares de silício, formando uma junção de dispositivos chamada “tandem”. Contudo, esses bons resultados correspondem geralmente a dispositivos pequenos, usados para pesquisa em laboratório. Conseguir produzir grandes áreas de perovskitas sem prejudicar a eficiência ainda é um desafio. A perovskita propriamente dita é um óxido de cálcio e titânio3. Foi descoberta nos montes Urais, na Rússia, em 1839. E recebeu esse nome em homenagem ao mineralogista russo Lev Perovski (1792-1856), ministro do Czar Nicolau I. Para se obter perovskitas pelo método de gas quenching, o primeiro passo consiste em depositar, sobre um suporte, uma solução contendo os compostos precursores da perovskita. Quando o solvente evapora, o material cristaliza e forma a organizada estrutura própria das perovskitas. Na preparação das soluções iniciais, a equipe de pesquisadores utilizou dois solventes diferentes combinados com diversos precursores e observou que cada combinação leva a um caminho único de formação de intermediários, o que impacta na morfologia e nas propriedades finais da perovskita, bem como na sua eficiência dentro das células solares.

Study paves the way for the development of more efficient solar cells. In just ten years of research, perovskite solar cells have become competitive in terms of efficiency. Currently, it is known that their ability to convert light into electricity is even greater when they are stacked on top of silicon solar cells, forming a junction of devices called “tandem”. However, these good results generally correspond to small devices, used for laboratory research. Managing to produce large areas of perovskite without impairing efficiency is still a challenge. Perovskite itself is a calcium and titanium oxide3. It was discovered in the Ural Mountains in Russia in 1839. It was named after the Russian mineralogist Lev Perovski (1792-1856), Minister of Czar Nicholas I. To obtain perovskites by the gas quenching method, the first step is to deposit, on a support, a solution containing the precursor compounds of perovskite. When the solvent evaporates, the material crystallizes and forms the organized perovskite structure. However, before this happens, several compounds with different structures (so-called “intermediates”) are formed momentarily. In the preparation of the initial solutions, the research team used two different solvents combined with different precursors and observed that each combination leads to a unique path of formation of intermediates, which impacts on the morphology and final properties of perovskite, as well as on its efficiency inside the solar cells. In addition to providing valuable information on the formation of perovskites by gas quenching, the results of the research help in choosing the best solvent to obtain better perovskite films for solar cells, including those of the tandem type.

Fonte/Source (créditos): O artigo Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance, de Rodrigo Szostak, Sandy Sanchez, Paulo E. Marchezi, Adriano S. Marques, Jeann C. Silva, Matheus S. Holanda, Anders Hagfeldt, Hélio C. N. Tolentino e Ana F. Nogueira, pode ser lido em: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007473

https://agencia.fapesp.br/estudo-abre-caminho-para-o-desenvolvimento-de-celulas-solares-mais-eficientes/34734/

--- Send in a voice message: https://podcasters.spotify.com/pod/show/multimidiavillage/message
  continue reading

161 tập

Artwork
iconChia sẻ
 
Manage episode 313125808 series 3259842
Nội dung được cung cấp bởi multimidiavillage. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được multimidiavillage hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Em apenas dez anos de pesquisa, as células solares de perovskitas tornaram-se competitivas em termos de eficiência. Atualmente, sabe-se que a sua capacidade de converter luz em eletricidade é maior ainda quando elas são empilhadas em cima de células solares de silício, formando uma junção de dispositivos chamada “tandem”. Contudo, esses bons resultados correspondem geralmente a dispositivos pequenos, usados para pesquisa em laboratório. Conseguir produzir grandes áreas de perovskitas sem prejudicar a eficiência ainda é um desafio. A perovskita propriamente dita é um óxido de cálcio e titânio3. Foi descoberta nos montes Urais, na Rússia, em 1839. E recebeu esse nome em homenagem ao mineralogista russo Lev Perovski (1792-1856), ministro do Czar Nicolau I. Para se obter perovskitas pelo método de gas quenching, o primeiro passo consiste em depositar, sobre um suporte, uma solução contendo os compostos precursores da perovskita. Quando o solvente evapora, o material cristaliza e forma a organizada estrutura própria das perovskitas. Na preparação das soluções iniciais, a equipe de pesquisadores utilizou dois solventes diferentes combinados com diversos precursores e observou que cada combinação leva a um caminho único de formação de intermediários, o que impacta na morfologia e nas propriedades finais da perovskita, bem como na sua eficiência dentro das células solares.

Study paves the way for the development of more efficient solar cells. In just ten years of research, perovskite solar cells have become competitive in terms of efficiency. Currently, it is known that their ability to convert light into electricity is even greater when they are stacked on top of silicon solar cells, forming a junction of devices called “tandem”. However, these good results generally correspond to small devices, used for laboratory research. Managing to produce large areas of perovskite without impairing efficiency is still a challenge. Perovskite itself is a calcium and titanium oxide3. It was discovered in the Ural Mountains in Russia in 1839. It was named after the Russian mineralogist Lev Perovski (1792-1856), Minister of Czar Nicholas I. To obtain perovskites by the gas quenching method, the first step is to deposit, on a support, a solution containing the precursor compounds of perovskite. When the solvent evaporates, the material crystallizes and forms the organized perovskite structure. However, before this happens, several compounds with different structures (so-called “intermediates”) are formed momentarily. In the preparation of the initial solutions, the research team used two different solvents combined with different precursors and observed that each combination leads to a unique path of formation of intermediates, which impacts on the morphology and final properties of perovskite, as well as on its efficiency inside the solar cells. In addition to providing valuable information on the formation of perovskites by gas quenching, the results of the research help in choosing the best solvent to obtain better perovskite films for solar cells, including those of the tandem type.

Fonte/Source (créditos): O artigo Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance, de Rodrigo Szostak, Sandy Sanchez, Paulo E. Marchezi, Adriano S. Marques, Jeann C. Silva, Matheus S. Holanda, Anders Hagfeldt, Hélio C. N. Tolentino e Ana F. Nogueira, pode ser lido em: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007473

https://agencia.fapesp.br/estudo-abre-caminho-para-o-desenvolvimento-de-celulas-solares-mais-eficientes/34734/

--- Send in a voice message: https://podcasters.spotify.com/pod/show/multimidiavillage/message
  continue reading

161 tập

Усі епізоди

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh