Artwork

Nội dung được cung cấp bởi PyTorch, Edward Yang, and Team PyTorch. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được PyTorch, Edward Yang, and Team PyTorch hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Anatomy of a domain library

16:11
 
Chia sẻ
 

Manage episode 295783831 series 2921809
Nội dung được cung cấp bởi PyTorch, Edward Yang, and Team PyTorch. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được PyTorch, Edward Yang, and Team PyTorch hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 tập

Artwork

Anatomy of a domain library

PyTorch Developer Podcast

32 subscribers

published

iconChia sẻ
 
Manage episode 295783831 series 2921809
Nội dung được cung cấp bởi PyTorch, Edward Yang, and Team PyTorch. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được PyTorch, Edward Yang, and Team PyTorch hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 tập

Minden epizód

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe