Artwork

Nội dung được cung cấp bởi Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

The Evolution of GenAI: From GANs to Multi-Agent Systems

43:27
 
Chia sẻ
 

Manage episode 436837193 series 2954151
Nội dung được cung cấp bởi Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Early Interest in Generative AI

  • Martin's initial exposure to Generative AI in 2016 through a conference talk in Milano, Italy, and his early work with Generative Adversarial Networks (GANs).

Development of GANs and Early Language Models since 2016

  • The evolution of Generative AI from visual content generation to text generation with models like Google's Bard and the increasing popularity of GANs in 2018.

Launch of GenerativeAI.net and Online Course

  • Martin's creation of GenerativeAI.net and an online course, which gained traction after being promoted on platforms like Reddit and Hacker News.

Defining Generative AI

  • Martin’s explanation of Generative AI as a technology focused on generating content, contrasting it with Discriminative AI, which focuses on classification and selection.

Evolution of GenAI Technologies

  • The shift from LSTM models to Transformer models, highlighting key developments like the "Attention Is All You Need" paper and the impact of Transformer architecture on language models.

Impact of Computing Power on GenAI

  • The role of increasing computing power and larger datasets in improving the capabilities of Generative AI

Generative AI in Business Applications

  • Martin’s insights into the real-world applications of GenAI, including customer service automation, marketing, and software development.

Retrieval Augmented Generation (RAG) Architecture

  • The use of RAG architecture in enterprise AI applications, where documents are chunked and queried to provide accurate and relevant responses using large language models.

Technological Drivers of GenAI

  • The advancements in chip design, including Nvidia’s focus on GPU improvements and the emergence of new processing unit architectures like the LPU.

Small vs. Large Language Models

  • A comparison between small and large language models, discussing their relative efficiency, cost, and performance, especially in specific use cases.

Challenges in Implementing GenAI Systems

  • Common challenges faced in deploying GenAI systems, including the costs associated with training and fine-tuning large language models and the importance of clean data.

Measuring GenAI Performance

  • Martin’s explanation of the complexities in measuring the performance of GenAI systems, including the use of the Hallucination Leaderboard for evaluating language models.

Emerging Trends in GenAI

  • Discussion of future trends such as the rise of multi-agent frameworks, the potential for AI-driven humanoid robots, and the path towards Artificial General Intelligence (AGI).

  continue reading

26 tập

Artwork
iconChia sẻ
 
Manage episode 436837193 series 2954151
Nội dung được cung cấp bởi Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Early Interest in Generative AI

  • Martin's initial exposure to Generative AI in 2016 through a conference talk in Milano, Italy, and his early work with Generative Adversarial Networks (GANs).

Development of GANs and Early Language Models since 2016

  • The evolution of Generative AI from visual content generation to text generation with models like Google's Bard and the increasing popularity of GANs in 2018.

Launch of GenerativeAI.net and Online Course

  • Martin's creation of GenerativeAI.net and an online course, which gained traction after being promoted on platforms like Reddit and Hacker News.

Defining Generative AI

  • Martin’s explanation of Generative AI as a technology focused on generating content, contrasting it with Discriminative AI, which focuses on classification and selection.

Evolution of GenAI Technologies

  • The shift from LSTM models to Transformer models, highlighting key developments like the "Attention Is All You Need" paper and the impact of Transformer architecture on language models.

Impact of Computing Power on GenAI

  • The role of increasing computing power and larger datasets in improving the capabilities of Generative AI

Generative AI in Business Applications

  • Martin’s insights into the real-world applications of GenAI, including customer service automation, marketing, and software development.

Retrieval Augmented Generation (RAG) Architecture

  • The use of RAG architecture in enterprise AI applications, where documents are chunked and queried to provide accurate and relevant responses using large language models.

Technological Drivers of GenAI

  • The advancements in chip design, including Nvidia’s focus on GPU improvements and the emergence of new processing unit architectures like the LPU.

Small vs. Large Language Models

  • A comparison between small and large language models, discussing their relative efficiency, cost, and performance, especially in specific use cases.

Challenges in Implementing GenAI Systems

  • Common challenges faced in deploying GenAI systems, including the costs associated with training and fine-tuning large language models and the importance of clean data.

Measuring GenAI Performance

  • Martin’s explanation of the complexities in measuring the performance of GenAI systems, including the use of the Hallucination Leaderboard for evaluating language models.

Emerging Trends in GenAI

  • Discussion of future trends such as the rise of multi-agent frameworks, the potential for AI-driven humanoid robots, and the path towards Artificial General Intelligence (AGI).

  continue reading

26 tập

すべてのエピソード

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh