Artwork

Nội dung được cung cấp bởi Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Can You Rely on Your AI? Applying the AIR Tool to Improve Classifier Performance

38:50
 
Chia sẻ
 

Manage episode 421358557 series 1264075
Nội dung được cung cấp bởi Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 tập

Artwork
iconChia sẻ
 
Manage episode 421358557 series 1264075
Nội dung được cung cấp bởi Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 tập

Alle episoder

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe