Artwork

Nội dung được cung cấp bởi Springer Nature. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Springer Nature hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

AI-based analysis of social media language predicts addiction treatment dropout at 90 days

9:09
 
Chia sẻ
 

Manage episode 366899112 series 1455694
Nội dung được cung cấp bởi Springer Nature. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Springer Nature hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
In-person treatment for substance use disorders is an incredibly important tool, but there’s a high failure rate — more than 50 percent of people who enter drop out within the first month. There hasn’t been a highly accurate method of identifying who might leave and who might succeed, and knowing this could help centers allocate resources to give the right type of assistance to the right people at the right time. One tool available is called the Addiction Severity Index, which is used to help identify the severity of the addiction and thus customize treatment, but it wasn’t developed to gauge whether a patient might drop out entirely. So a team of researchers decided to mine something known as a digital phenotype. Dr. Brenda Curtis is a clinical researcher at the National Institute on Drug Abuse Intramural Research Program, and she’s one of the paper’s authors. Read the full study here: https://www.nature.com/articles/s41386-023-01585-5
  continue reading

554 tập

Artwork
iconChia sẻ
 
Manage episode 366899112 series 1455694
Nội dung được cung cấp bởi Springer Nature. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Springer Nature hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
In-person treatment for substance use disorders is an incredibly important tool, but there’s a high failure rate — more than 50 percent of people who enter drop out within the first month. There hasn’t been a highly accurate method of identifying who might leave and who might succeed, and knowing this could help centers allocate resources to give the right type of assistance to the right people at the right time. One tool available is called the Addiction Severity Index, which is used to help identify the severity of the addiction and thus customize treatment, but it wasn’t developed to gauge whether a patient might drop out entirely. So a team of researchers decided to mine something known as a digital phenotype. Dr. Brenda Curtis is a clinical researcher at the National Institute on Drug Abuse Intramural Research Program, and she’s one of the paper’s authors. Read the full study here: https://www.nature.com/articles/s41386-023-01585-5
  continue reading

554 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh