Artwork

Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Building Scalable ML Infrastructure at Outerbounds with Savin Goyal

36:46
 
Chia sẻ
 

Manage episode 471106946 series 2948506
Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 tập

Artwork
iconChia sẻ
 
Manage episode 471106946 series 2948506
Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

51 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe