Artwork

Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Optimizing Large-Scale Deployments at LinkedIn with Rahul Gade

27:47
 
Chia sẻ
 

Manage episode 453266231 series 2948506
Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

49 tập

Artwork
iconChia sẻ
 
Manage episode 453266231 series 2948506
Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

49 tập

Tất cả các tập

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe