Artwork

Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Building an End-to-End Data Observability System at Netflix with Joseph Machado

38:54
 
Chia sẻ
 

Manage episode 482862846 series 2053958
Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Building reliable data pipelines starts with maintaining strong data quality standards and creating efficient systems for auditing, publishing and monitoring. In this episode, we explore the real-world patterns and best practices for ensuring data pipelines stay accurate, scalable and trustworthy.

Joseph Machado, Senior Data Engineer at Netflix, joins us to share practical insights gleaned from supporting Netflix’s Ads business as well as over a decade of experience in the data engineering space. He discusses implementing audit publish patterns, building observability dashboards, defining in-band and separate data quality checks, and optimizing data validation across large-scale systems.

Key Takeaways:

.

(03:14) Supporting data privacy and engineering efficiency within data systems.

(10:41) Validating outputs with reconciliation checks to catch transformation issues.

(16:06) Applying standardized patterns for auditing, validating and publishing data.

(19:28) Capturing historical check results to monitor system health and improvements.

(21:29) Treating data quality and availability as separate monitoring concerns.

(26:26) Using containerization strategies to streamline pipeline executions.

(29:47) Leveraging orchestration platforms for better visibility and retry capability.

(31:59) Managing business pressure without sacrificing data quality practices.

(35:46) Starting simple with quality checks and evolving toward more complex frameworks.

Resources Mentioned:

Joseph Machado

https://www.linkedin.com/in/josephmachado1991/

Netflix | LinkedIn

https://www.linkedin.com/company/netflix/

Netflix | Website

https://www.netflix.com/browse

Start Data Engineering

https://www.startdataengineering.com/

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Great Expectations

https://greatexpectations.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 tập

Artwork
iconChia sẻ
 
Manage episode 482862846 series 2053958
Nội dung được cung cấp bởi The Data Flowcast. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được The Data Flowcast hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Building reliable data pipelines starts with maintaining strong data quality standards and creating efficient systems for auditing, publishing and monitoring. In this episode, we explore the real-world patterns and best practices for ensuring data pipelines stay accurate, scalable and trustworthy.

Joseph Machado, Senior Data Engineer at Netflix, joins us to share practical insights gleaned from supporting Netflix’s Ads business as well as over a decade of experience in the data engineering space. He discusses implementing audit publish patterns, building observability dashboards, defining in-band and separate data quality checks, and optimizing data validation across large-scale systems.

Key Takeaways:

.

(03:14) Supporting data privacy and engineering efficiency within data systems.

(10:41) Validating outputs with reconciliation checks to catch transformation issues.

(16:06) Applying standardized patterns for auditing, validating and publishing data.

(19:28) Capturing historical check results to monitor system health and improvements.

(21:29) Treating data quality and availability as separate monitoring concerns.

(26:26) Using containerization strategies to streamline pipeline executions.

(29:47) Leveraging orchestration platforms for better visibility and retry capability.

(31:59) Managing business pressure without sacrificing data quality practices.

(35:46) Starting simple with quality checks and evolving toward more complex frameworks.

Resources Mentioned:

Joseph Machado

https://www.linkedin.com/in/josephmachado1991/

Netflix | LinkedIn

https://www.linkedin.com/company/netflix/

Netflix | Website

https://www.netflix.com/browse

Start Data Engineering

https://www.startdataengineering.com/

Apache Airflow

https://airflow.apache.org/

dbt Labs

https://www.getdbt.com/

Great Expectations

https://greatexpectations.io/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 tập

Tous les épisodes

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe