Artwork

Nội dung được cung cấp bởi TWIML and Sam Charrington. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được TWIML and Sam Charrington hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

Ensuring Privacy for Any LLM with Patricia Thaine - #716

51:33
 
Chia sẻ
 

Manage episode 463634929 series 2355587
Nội dung được cung cấp bởi TWIML and Sam Charrington. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được TWIML and Sam Charrington hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Today, we're joined by Patricia Thaine, co-founder and CEO of Private AI to discuss techniques for ensuring privacy, data minimization, and compliance when using 3rd-party large language models (LLMs) and other AI services. We explore the risks of data leakage from LLMs and embeddings, the complexities of identifying and redacting personal information across various data flows, and the approach Private AI has taken to mitigate these risks. We also dig into the challenges of entity recognition in multimodal systems including OCR files, documents, images, and audio, and the importance of data quality and model accuracy. Additionally, Patricia shares insights on the limitations of data anonymization, the benefits of balancing real-world and synthetic data in model training and development, and the relationship between privacy and bias in AI. Finally, we touch on the evolving landscape of AI regulations like GDPR, CPRA, and the EU AI Act, and the future of privacy in artificial intelligence.

The complete show notes for this episode can be found at https://twimlai.com/go/716.

  continue reading

738 tập

Artwork
iconChia sẻ
 
Manage episode 463634929 series 2355587
Nội dung được cung cấp bởi TWIML and Sam Charrington. Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được TWIML and Sam Charrington hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.

Today, we're joined by Patricia Thaine, co-founder and CEO of Private AI to discuss techniques for ensuring privacy, data minimization, and compliance when using 3rd-party large language models (LLMs) and other AI services. We explore the risks of data leakage from LLMs and embeddings, the complexities of identifying and redacting personal information across various data flows, and the approach Private AI has taken to mitigate these risks. We also dig into the challenges of entity recognition in multimodal systems including OCR files, documents, images, and audio, and the importance of data quality and model accuracy. Additionally, Patricia shares insights on the limitations of data anonymization, the benefits of balancing real-world and synthetic data in model training and development, and the relationship between privacy and bias in AI. Finally, we touch on the evolving landscape of AI regulations like GDPR, CPRA, and the EU AI Act, and the future of privacy in artificial intelligence.

The complete show notes for this episode can be found at https://twimlai.com/go/716.

  continue reading

738 tập

すべてのエピソード

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh

Nghe chương trình này trong khi bạn khám phá
Nghe