Artwork

Nội dung được cung cấp bởi Karlsruher Institut für Technologie (KIT). Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Karlsruher Institut für Technologie (KIT) hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
Player FM - Ứng dụng Podcast
Chuyển sang chế độ ngoại tuyến với ứng dụng Player FM !

14: Wahrscheinlichkeitstheorie, Vorlesung, SS 2016, am 20.06.2016

1:25:26
 
Chia sẻ
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754104 series 1602822
Nội dung được cung cấp bởi Karlsruher Institut für Technologie (KIT). Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Karlsruher Institut für Technologie (KIT) hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
14 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung von Begriffen und Resultaten aus Lektion 13 0:05:26 Satz von Fubini für Übergangswahrscheinlichkeiten 0:12:41 Bemerkungen zur Kopplung (Modellierungsaspekt, Zusammenhang mit bedingten W‘en) 0:22:54 Übergangswahrscheinlichkeiten und Dichten 0:30:16 Beispiel (Münzwürfe mit gleichverteilter Erfolgswahrscheinlichkeit) 0:39:35 Bemerkung (iterierte Berechnung von Erwartungswerten) 0:44:19 Konstruktion der Verteilung eines Zufallsvektors aus Marginalvert. und bedingter Verteil. 0:50:02 Bedingte Verteilung 0:59:23 Beispiel (Verteilungsmischungen) 1:06:49 Beispiel Negative Binomialverteilung als „Gamma-Mischung“ von Poisson-Verteilungen) 1:12:45 Beispiel (bivariate Normalverteilung) 1:20:30 Zerlegung einer gemeinsamen Verteilung in Marginalverteilung und bedingte Verteilung
  continue reading

20 tập

Artwork
iconChia sẻ
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754104 series 1602822
Nội dung được cung cấp bởi Karlsruher Institut für Technologie (KIT). Tất cả nội dung podcast bao gồm các tập, đồ họa và mô tả podcast đều được Karlsruher Institut für Technologie (KIT) hoặc đối tác nền tảng podcast của họ tải lên và cung cấp trực tiếp. Nếu bạn cho rằng ai đó đang sử dụng tác phẩm có bản quyền của bạn mà không có sự cho phép của bạn, bạn có thể làm theo quy trình được nêu ở đây https://vi.player.fm/legal.
14 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung von Begriffen und Resultaten aus Lektion 13 0:05:26 Satz von Fubini für Übergangswahrscheinlichkeiten 0:12:41 Bemerkungen zur Kopplung (Modellierungsaspekt, Zusammenhang mit bedingten W‘en) 0:22:54 Übergangswahrscheinlichkeiten und Dichten 0:30:16 Beispiel (Münzwürfe mit gleichverteilter Erfolgswahrscheinlichkeit) 0:39:35 Bemerkung (iterierte Berechnung von Erwartungswerten) 0:44:19 Konstruktion der Verteilung eines Zufallsvektors aus Marginalvert. und bedingter Verteil. 0:50:02 Bedingte Verteilung 0:59:23 Beispiel (Verteilungsmischungen) 1:06:49 Beispiel Negative Binomialverteilung als „Gamma-Mischung“ von Poisson-Verteilungen) 1:12:45 Beispiel (bivariate Normalverteilung) 1:20:30 Zerlegung einer gemeinsamen Verteilung in Marginalverteilung und bedingte Verteilung
  continue reading

20 tập

همه قسمت ها

×
 
Loading …

Chào mừng bạn đến với Player FM!

Player FM đang quét trang web để tìm các podcast chất lượng cao cho bạn thưởng thức ngay bây giờ. Đây là ứng dụng podcast tốt nhất và hoạt động trên Android, iPhone và web. Đăng ký để đồng bộ các theo dõi trên tất cả thiết bị.

 

Hướng dẫn sử dụng nhanh